Recognizing the Cartan association schemes in polynomial time

(based on the joint work with A.Vasil'ev)

Ilya Ponomarenko

St.Petersburg Department of V.A.Steklov Institute of Mathematics of the Russian Academy of Sciences

> Agorithmic Graph Theory on the Adriatic Cost, Koper, Slovenia, June 16-19, 2015

Definition.

For a permutation group $G \leq \text{Sym}(\Omega)$, the colored graph Γ_G is defined to be the compete graph with vertex set Ω and the color classes $\text{Orb}(G, \Omega \times \Omega)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition.

For a permutation group $G \leq \text{Sym}(\Omega)$, the colored graph Γ_G is defined to be the compete graph with vertex set Ω and the color classes $\text{Orb}(G, \Omega \times \Omega)$.

Problem CAUT:

 given a colored graph Γ, test whether Γ = Γ_G for some G, and (if so) find Aut(Γ);

Definition.

For a permutation group $G \leq \text{Sym}(\Omega)$, the colored graph Γ_G is defined to be the compete graph with vertex set Ω and the color classes $\text{Orb}(G, \Omega \times \Omega)$.

Problem CAUT:

- given a colored graph Γ, test whether Γ = Γ_G for some G, and (if so) find Aut(Γ);
- given colored graphs $\Gamma = \Gamma_G$ and Γ' , find the set $Iso(\Gamma, \Gamma')$.

Definition.

For a permutation group $G \leq \text{Sym}(\Omega)$, the colored graph Γ_G is defined to be the compete graph with vertex set Ω and the color classes $\text{Orb}(G, \Omega \times \Omega)$.

Problem CAUT:

- given a colored graph Γ, test whether Γ = Γ_G for some G, and (if so) find Aut(Γ);
- given colored graphs $\Gamma = \Gamma_G$ and Γ' , find the set $Iso(\Gamma, \Gamma')$.

When |G| is odd, the problem CAUT can be solved in time $n^{O(1)}$ with $n = |\Omega|$ (P, 2012).

The graph Γ_G is a special case of association scheme (Ω, S) with S = Orb(G, Ω × Ω).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Remarks

- The graph Γ_G is a special case of association scheme (Ω, S) with S = Orb(G, Ω × Ω).
- The intersection numbers of (Ω, S) are the coefficients in

$$A_r A_s = \sum_{t \in S} c_{rs}^t A_t,$$

where A_r , A_s , A_t are the adjacency matrices of r, s, $t \in S$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Remarks

- The graph Γ_G is a special case of association scheme (Ω, S) with S = Orb(G, Ω × Ω).
- The intersection numbers of (Ω, S) are the coefficients in

$$A_r A_s = \sum_{t \in S} c_{rs}^t A_t,$$

where A_r , A_s , A_t are the adjacency matrices of r, s, $t \in S$.

 The *m*-dim intersection numbers are, roughly speaking, the intersection numbers for *G* acting on Ω^m.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remarks

- The graph Γ_G is a special case of association scheme (Ω, S) with S = Orb(G, Ω × Ω).
- The intersection numbers of (Ω, S) are the coefficients in

$$A_r A_s = \sum_{t \in S} c_{rs}^t A_t,$$

where A_r , A_s , A_t are the adjacency matrices of r, s, $t \in S$.

- The *m*-dim intersection numbers are, roughly speaking, the intersection numbers for *G* acting on Ω^m.
- If G is transitive and H is the point stabilizer, then Ω can be identified with G/H so that (Hx)^g = Hxg for all x ∈ G.

- $G = \langle B, N \rangle$,
- the group $H = B \cap N$ is normal in N,
- the group W = N/H is generated by a set *S* of involutions.

- $G = \langle B, N \rangle$,
- the group $H = B \cap N$ is normal in N,
- the group W = N/H is generated by a set *S* of involutions.

If G = GL(n, q), then (in a suitable linear base)

B is the group of the upper triangular matrices, N the group of monomial matrices and H the group of the diagonal matrices.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- $G = \langle B, N \rangle$,
- the group $H = B \cap N$ is normal in N,
- the group W = N/H is generated by a set *S* of involutions.

If G = GL(n, q), then (in a suitable linear base)

B is the group of the upper triangular matrices, N the group of monomial matrices and H the group of the diagonal matrices.

The subgroups *B*, *H* and *W* are the Borel, Cartan and Weil subgroups of *G*; the number |S| is called the rank of *G*.

- $G = \langle B, N \rangle$,
- the group $H = B \cap N$ is normal in N,
- the group W = N/H is generated by a set *S* of involutions.

If G = GL(n, q), then (in a suitable linear base)

B is the group of the upper triangular matrices, N the group of monomial matrices and H the group of the diagonal matrices.

The subgroups *B*, *H* and *W* are the Borel, Cartan and Weil subgroups of *G*; the number |S| is called the rank of *G*. Any finite simple group *G* of Lie type has a BN-pair.

The main result

Notation.

Denote by Car(m, q) the class of all simple $G \leq Sym(\Omega)$ s.t.

• G is a group of Lie type of rank m over a field of order q,

- $\Omega = G/H$, where *H* is a Cartan subgroup,
- *G* acts on Ω by the right multiplications.

The main result

Notation.

Denote by Car(m, q) the class of all simple $G \leq Sym(\Omega)$ s.t.

- G is a group of Lie type of rank m over a field of order q,
- $\Omega = G/H$, where *H* is a Cartan subgroup,
- *G* acts on Ω by the right multiplications.

Theorem 1.

There are constants c_m , c_q s.t. if $m \ge c_m$, $q \ge c_q m$, then CAUT can be solved in time $n^{O(1)}$ for any $G \in Car(m, q)$ $(n = |\Omega|)$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The main result

Notation.

Denote by Car(m, q) the class of all simple $G \leq Sym(\Omega)$ s.t.

- G is a group of Lie type of rank m over a field of order q,
- $\Omega = G/H$, where *H* is a Cartan subgroup,
- *G* acts on Ω by the right multiplications.

Theorem 1.

There are constants c_m , c_q s.t. if $m \ge c_m$, $q \ge c_q m$, then CAUT can be solved in time $n^{O(1)}$ for any $G \in Car(m, q)$ $(n = |\Omega|)$.

Theorem 2.

Under the hypothesis of Theorem 1, suppose $G \in Car(m, q)$. Then the association scheme of *G* is uniquely determined by the 2-dim intersection numbers.

Recognizing the Cartan scheme

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Input: a colored graph Γ on Ω .

Recognizing the Cartan scheme

Input: a colored graph Γ on Ω . Output: a simple group *G* such that $\Gamma = \Gamma_G$, or "NO".

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Recognizing the Cartan scheme

Input: a colored graph Γ on Ω . Output: a simple group *G* such that $\Gamma = \Gamma_G$, or "NO".

Step 1. Find the set *R* of all refinements $\Gamma_{\alpha,\beta}$ with $\alpha, \beta \in \Omega$, in which all vertices have different colors.

(ロ) (同) (三) (三) (三) (○) (○)

Recognizing the Cartan scheme

Input: a colored graph Γ on Ω . Output: a simple group *G* such that $\Gamma = \Gamma_G$, or "NO".

Step 1. Find the set *R* of all refinements $\Gamma_{\alpha,\beta}$ with $\alpha, \beta \in \Omega$, in which all vertices have different colors.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Step 2. Set $G = \{ f \in \mathsf{Iso}(\Delta, \Delta') : \Delta, \Delta' \in R \}.$

Recognizing the Cartan scheme

Input: a colored graph Γ on Ω . Output: a simple group *G* such that $\Gamma = \Gamma_G$, or "NO".

Step 1. Find the set *R* of all refinements $\Gamma_{\alpha,\beta}$ with $\alpha, \beta \in \Omega$, in which all vertices have different colors.

- Step 2. Set $G = \{f \in \mathsf{Iso}(\Delta, \Delta') : \Delta, \Delta' \in R\}.$
- Step 3. If *G* is not simple or $\Gamma \neq \Gamma_G$, then output "NO".

Recognizing the Cartan scheme

Input: a colored graph Γ on Ω . Output: a simple group *G* such that $\Gamma = \Gamma_G$, or "NO".

Step 1. Find the set *R* of all refinements $\Gamma_{\alpha,\beta}$ with $\alpha, \beta \in \Omega$, in which all vertices have different colors.

- Step 2. Set $G = \{f \in \mathsf{Iso}(\Delta, \Delta') : \Delta, \Delta' \in R\}.$
- Step 3. If *G* is not simple or $\Gamma \neq \Gamma_G$, then output "NO". Step 4. Output *G*.

Recognizing the Cartan scheme

Input: a colored graph Γ on Ω . Output: a simple group *G* such that $\Gamma = \Gamma_G$, or "NO".

- Step 1. Find the set *R* of all refinements $\Gamma_{\alpha,\beta}$ with $\alpha, \beta \in \Omega$, in which all vertices have different colors.
- Step 2. Set $G = \{f \in \mathsf{Iso}(\Delta, \Delta') : \Delta, \Delta' \in R\}.$
- Step 3. If *G* is not simple or $\Gamma \neq \Gamma_G$, then output "NO".

Step 4. Output G.

Remarks:

• Step 1 is performed by the Weisfeiler-Leman algorithm.

- $|G| \leq n^2$, where $n = |\Omega|$.
- The running time is $n^{O(1)}$.

The correctness of the algorithm

Notation.

Denote by k and c the maximum color valency of a vertex and of a pair of vertices in Γ , respectively.

Theorem 3.

Suppose that the algorithm finds the group *G*. Then $G = Aut(\Gamma)$ whenever 2c(k - 1) < n.

Lemma.

Suppose $\Gamma = \Gamma_G$ is a Cartan graph. Then $k \leq |H|$ and

$$c \leq \max_{x \in G \setminus H} \sum_{h \in H} \chi(hx),$$

where χ is the permutation character of the group *G*.