
Recognizing the Cartan association schemes
in polynomial time

(based on the joint work with A.Vasil’ev)

Ilya Ponomarenko

St.Petersburg Department of V.A.Steklov Institute of Mathematics
of the Russian Academy of Sciences

Agorithmic Graph Theory on the Adriatic Cost,
Koper, Slovenia, June 16-19, 2015



The problem statement

Definition.

For a permutation group G ≤ Sym(Ω), the colored graph ΓG is
defined to be the compete graph with vertex set Ω and the color
classes Orb(G,Ω× Ω).

Problem CAUT:

• given a colored graph Γ, test whether Γ = ΓG for some G,
and (if so) find Aut(Γ);
• given colored graphs Γ = ΓG and Γ′, find the set Iso(Γ, Γ′).

When |G| is odd, the problem CAUT can be solved in time nO(1)

with n = |Ω| (P, 2012).
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Remarks

• The graph ΓG is a special case of association scheme
(Ω,S) with S = Orb(G,Ω× Ω).

• The intersection numbers of (Ω,S) are the coefficients in

Ar As =
∑
t∈S

ct
rsAt ,

where Ar ,As,At are the adjacency matrices of r , s, t ∈ S.
• The m-dim intersection numbers are, roughly speaking, the

intersection numbers for G acting on Ωm.
• If G is transitive and H is the point stabilizer, then Ω can be

identified with G/H so that (Hx)g = Hxg for all x ∈ G.
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Groups with BN-pairs

In any group G with a BN-pair we have a pair of subgroups B
and N such that:
• G = 〈B,N〉,
• the group H = B ∩ N is normal in N,
• the group W = N/H is generated by a set S of involutions.

If G = GL(n,q), then (in a suitable linear base)

B is the group of the upper triangular matrices, N the group of
monomial matrices and H the group of the diagonal matrices.

The subgroups B, H and W are the Borel, Cartan and Weil
subgroups of G; the number |S| is called the rank of G. Any
finite simple group G of Lie type has a BN-pair.
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The main result

Notation.

Denote by Car(m,q) the class of all simple G ≤ Sym(Ω) s.t.
• G is a group of Lie type of rank m over a field of order q,
• Ω = G/H, where H is a Cartan subgroup,
• G acts on Ω by the right multiplications.

Theorem 1.

There are constants cm, cq s.t. if m ≥ cm, q ≥ cqm, then CAUT
can be solved in time nO(1) for any G ∈ Car(m,q) (n = |Ω|).

Theorem 2.

Under the hypothesis of Theorem 1, suppose G ∈ Car(m,q).
Then the association scheme of G is uniquely determined by
the 2-dim intersection numbers.
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The recognizing algorithm

Recognizing the Cartan scheme

Input: a colored graph Γ on Ω.

Output: a simple group G such that Γ = ΓG, or ”NO”.

Step 1. Find the set R of all refinements Γα,β with α, β ∈ Ω, in
which all vertices have different colors.

Step 2. Set G = {f ∈ Iso(∆,∆′) : ∆,∆′ ∈ R}.
Step 3. If G is not simple or Γ 6= ΓG, then output ”NO”.
Step 4. Output G.

Remarks:
• Step 1 is performed by the Weisfeiler-Leman algorithm.
• |G| ≤ n2, where n = |Ω|.
• The running time is nO(1).
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The correctness of the algorithm

Notation.

Denote by k and c the maximum color valency of a vertex and
of a pair of vertices in Γ, respectively.

Theorem 3.

Suppose that the algorithm finds the group G. Then G = Aut(Γ)
whenever 2c(k − 1) < n.

Lemma.

Suppose Γ = ΓG is a Cartan graph. Then k ≤ |H| and

c ≤ max
x∈G\H

∑
h∈H

χ(hx),

where χ is the permutation character of the group G.


